

 Toggle navigation

 	

 Search Results for

 Show / Hide Table of Contents

READ ME

What's new

See General for general innovations

See PDFsharp for PDFsharp-specific information

See MigraDoc for MigraDoc-specific information

Starting with PDFsharp 6.1 we retrofit the support for .NET Framework.
When we started development of PDFsharp 6 we intentionally abandoned .NET Framework, because we wanted to use
new C# and framework features. E.g. we introduced the use of nullable reference types. During development we noticed that powerful new framework features like Memory<T> or Span<T> cannot be use without massive code refactoring. After finishing PDFsharp 6 we found that mostly all code
can work not only with .NET 6 but also with .NET Standard 2.0. Most language features we use, like
raw string literals or nullable reference types are just compiler features and will work fine with .NET Framework. So we considered that the support for .NET Framework is a huge benefit for
legacy .NET projects. In PDFsharp 6.1 we use conditional compilation for all new syntax features that need runtime support like range operator and provide new NuGet packages for .NET Standard 2.0 and .NET 4.7.2.

Prerequisites

What you need to use PDFsharp.

	.NET 6, .NET Standard 2.0, and .NET 4.7.2 NuGet packages

For your .NET (former .NET Core) projects we provide NuGet packages for .NET 6 or higher. For WinForms (GDI) or WPF projects under .NET we provide packages for .NET 6 for Windows.

For your .NET Framework projects we provide packages for .NET Standard 2.0. For WinForms (GDI) or WPF projects, we provide packages for .NET Framework 4.7.2.

	Latest SDK for building PDFsharp solutions

Use the latest version of the SDK (.NET 8.0.100) to build the PDFsharp solution. This is because we use C# features from versions higher than C# 7.

Breaking changes

The most important breaking changes.

	Your project must be .NET 6 or higher or compatible with .NET Standard 2.0 or .NET 4.7.2. The Core packages also support .NET Standard 2.0, the GDI and WPF packages also support .NET 4.7.2.
	Rename XFontStyle to XFontStyleEx in your existing PDFsharp projects

XFontStyle changed its meaning.
	The Core builds (NuGet packages PdfSharp and PDFsharp-MigraDoc) no longer use Windows components and can be used under Linux and other platforms.
	The Core builds support common raster image formats. See specifications for details. Supported image formats

	MigraDoc now ignores SpaceBefore for the first paragraph on a page.
	Attempts to modify the DefaultPageSetup may now lead to exceptions.

More about breaking changes in PDFsharp

More about breaking changes in MigraDoc

Assets are removed from repositories

PDFsharp uses a lot of assets like files for images, fonts, or PDFs. Starting with PDFsharp 6 these assets are not
part of the repositories anymore. Instead they are available for download from https://assets.pdfsharp.com.
Before you can compile or run projects of a solution go to the dev folder in the solution root and run download-assets.ps1 once.
This script downloads the assets required by the solution from the web in to the assets folder.

Compile PDFsharp solutions

When you clone a repository like PDFsharp or PDFsharp.Samples from GitHub and download the assets once, it should compile immediately with Visual Studio or dotnet build.

Because we use GitVersion to create the semantic version number from a git tag and the current branch name, there may be issues.

	The build may fail because GitVersion does not find a valid tag to calculate the version number. Tag your branch with e.g. git tag v6.0.0.private .
	Maybe you must commit something at least once. We have this issue sometimes. May be a bug in GitVersion.

There may be other reasons why the build fails.

	A C# file may contain non-ASCII characters and have neither BOM nor UTF-8 encoding. This can happen because our German Windows machines may encode such a file with Western European Codepage 1252 and such a file cannot be opened correctly on e.g. a Chinese Windows machine. Maybe this issue is already fixed in Visual Studio.

Let us know when a solution does not compile immediately.

Running tests

Run examples under Linux

The PDFsharp solution builds completely under Linux. But obviously only the PDFsharp core examples can be executed. We test it using WSL2 with Ubuntu 20.04 LTS.

 	
 Edit this page

 In this article

 Back to top

 Generated by DocFX

